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TWO-PHASE BOUNDARY LAYER WITH AN INCOMPRESSIBLE CARRIER PHASE 

ON A PLATE, WITH INJECTION AND SUCTION OF GAS FROM THE SURFACE 

A. M. Grishin and V. I. Zabarin UDC 532.529 

Two-phase flows in a boundary layer around bodies of different shapes were examined 
theoretically in [i-3]. Equations of a two-phase boundary layer were obtained in [I] in 
four characteristic cases on the basis of asymptotic analysis of the system of equations 
of two-phase flow at high Reynolds numbers. The structure of a boundary layer with an in- 
compressible carrier phase on the impermeable, stationary surface of a plate was studied 
in [2]. The investigation [3] examined the effect of the boundary layer on particle trajec- 
tory in the flow of an incompressible gas about a sphere in the "single-particle" regime. 

Here, we numerically study flow in a two-phase boundary layer about a plate with injec- 
tion and suction of gas from the surface. An asymptotic analysis of the initial equations 
of motion of the two-phase medium at high Reynolds numbers produces the boundary condition 
for the transverse component of particle velocity on the external boundary of the boundary 
layer. 

It was found that the presence of gas suction eliminates the high-particle-density layer 
in the boundary layer and leads to restructuring of the qualitative flow pattern. An addi- 
tion is made to the friction coefficient due to particle flow on the surface. With injec- 
tion of gas from the surface, a layer of pure gas is formed near the surface, while a sur- 
face of parameter discontinuity - a sheet - is formed inside the boundary layer. 

i. Formulation of the Problem. Written below are the equations of laminar motion of 
a two-phase mixture in a boundary layer near a flat plate parallel to the incoming flow. 
We assume that the volume fraction of the chemically inert spherical particles is small, 
the process is isothermal, there is a small difference between the local characteristics 
and the mean-volume characteristics, the physical density of the particles is much greater 
than the density of the carrier phase, Brownian motion of the particles is insignificant, 
and the Mach numbers are small. The equations of motion in this case have the form [i ]: 

Ou av aPsus OPsVs 
o-V + ~-y = o, -T~ +--~-y = o, ( 1 . 1 )  

Ou Ou 02u cD (it -- us), 
u-~z + v-~g = og- ~ - -  p~ %0--- 6 

Ovs Ovs c D Ou.+ Or+.+ c+V (U - -  U+), Us + Vs = - -  (V - -  V,+). 

Here, x = x'/L, y = y'/(LRe z/2) are dimensionless coordinates (the x axis is directed along 
the plate, while the y axis is directed normal to the plate; u = u'/u=, v = v'/(u=Re I/2) 
are dimensionless components of velocity in the x and y directions, respectively; c = Ts/ 
(L/u~) is the Stokes number, characterizing the intensity of viscous interaction of the 
phases; T s = @s~ is the characteristic relaxation time of particle velocity; V is the 
viscosity coefficient of the carrier phase; ps ~ is the physical density of the particles; 

Tomsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, 
pp. 54-61, September-October, 1987. Original article submitted June 3, 1986. 

692 0021-8944/87/2805-0692512.50 �9 1988 Plenum Publishing Corporation 



d s is the particle diameter; L is the characteristic dimension (chosen below); Ps = Ps '/p= 
is the dimensionless continuous density; p~ is the density of the carrier phase; Re = 
p=u~L/~ is the Reynolds number of the carrier phase; c D = cD(Re s) is the drag coefficient 
of the particles; Re s = p~[v' - Vs'[ds/~ is the relative Reynolds number; v' and v s' are 
the velocity vectors of the phases; CD0 = 24/Re s is the Stokes drag coefficient of the par- 
ticles; the subscript s pertains to parameters of the particles; the subscript ~ pertains 
to undisturbed parameters of the mixture; the primes denote dimensional parameters. 

System (I.i) must be solved with allowance for the boundary and initial conditions 

u(x ,  co) ~ i ,  us(x,  oo) = t ,  p~(x, oo) = p~;  ( 1 . 2 )  

dr+, i (re - -  v+e); ( 1 .3 )  
dz - -  "5 

u(X, O) = O, v(X, O) = Vw(X); ( 1 . 4 )  

p~(o, o) = p ~ ,  us(o, o) = i ,  v,(o, o) = o, ( 1 . 5 )  

where Ve(X) and Vse(X) are values of the functions v and v s on the external boundary of the 
boundary layer; Vw(S) is the specified injection or suction velocity on the surface (the 
subscript w henceforth corresponds to parameters on the surface of the plate). System (i.i), 
with boundary conditions (1.2)-(1.4), was obtained by the method of joinable asymptotic ex- 
pansions [4].. This is in contrast to the method of boundary-layer corrections used in [i]. 

It should be noted that the boundary condition for the transverse component of particle 
velocity v s on the external boundary of the boundary layer (1.3) reflects the effect of in- 
teraction of the inviscid external flow and the boundary layer through the velocity compo- 
nent v s . This condition is an additional equation which must be solved together with system 
(i.I), since it includes the function v(x, y). This function is not known until the equa- 
tions of the boundary layer are solved. On the other hand, the boundary-layer equations 
cannot be solved without knowing the velocity component Vse on the external boundary of the 
boundary layer, which is found from (1.3)o 

It should be emphasized that since a one-pressure model was used to describe the flow 
of the two-phase medium in the derivation of system (i.i), this system has the same range 
of application as the model in [5, 6], strictly speaking. In any case, it can be used to 
mathematically describe flows in boundary layers for aerosols. It was also assumed that 
with suction of gas from the surface, particles falling on the surface are removed from the 
flow region. This assumption may be valid for sufficiently fine or coarse particles. 

2. Numerical Solutions of the Equations of a Two-Phase Boundary Layer and Their Anal- 
System (I.i), with boundary and initial conditions (1.2)-(1.5), was solved numeri- 

cally. The equations for the carrier phase were solved by an implicit method [7] having 
an accuracy on the order of O(Ax 2, Ay4). The equations of motion of the disperse phase were 
solved by Euler's method, with correction along the particle streamlines. The order of ac- 
curacy here was O(Ax=). At each step for x, we used iteration to match the values of the 
parameters of the gas and condensed phases. Here, the equations of the carrier phase were 
converted to parabolic variables x, q (q = y/v~-~, and we wrote the following for the stream 
function: 

l ( x , n ) = / w +  udn', v = ~  n u ~ d n - - ( / ~ + 2 x & )  , 
0 

from which the boundary condition for the stream function has the form fw ~ f(x, 0) = 
-Vw2V~-x. In ]performing the numerical calculations, the characteristic dimension L was chosen 
to be equal to the relaxation length of particle velocity, L = u~(Ps~ 

The behavior of the solution for a stationary and impermeable plate surface with a 
Stokes law of particle drag was studied in sufficient detail in [2]. Here, we present re- 
sults for this problem when the particle drag coefficient in the gas is given by a formula 
[8] which more closely reflects reality and adequately describes the experimental data at 
0 ~ Re s ~ i000. Then the expression for CD/CD0 , entering into (1.5), can be transformed: 
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1 Re~/a=iq_ t R^2/ale_u,]213 c ~  d - y e ~  ( 2 . 1 )  
r 

(R%~ = p~u~dJ[.~ = Re ds/L) .  

In  a c c o r d a n c e  w i t h  t h e  n o t i o n  o f  c o n t i n u i t y  o f  t h e  gas  and p a r t i c l e s  and t h e  e s t i m a t e  f o r  
t h e  t h i c k n e s s  o f  t h e  t w o - p h a s e  bounda ry  l a y e r  O ( R e - 1 / 2 ) ,  we o b t a i n  an e s t i m a t e  o f  t h e  u p p e r  
bound f o r  t h e  c r i t e r i o n  Res~ in  Eq. ( 2 . 1 ) :  

R%~ << Re~/'. 

In  t h e  c a s e  o f  f low a b o u t  a s p h e r i c a l  p a r t i c l e ,  t h e  maximum Rey n o ld s  number Re a c h i e v -  
a b l e  f o r  l a m i n a r  f l ow  i s  a b o u t  2 . 10  ~. Thus ,  t h e  c o n d i t i o n  Res~ << 450 s h o u l d  be s a t i s f i e d  
f o r  l a m i n a r  f l ow  in  t h e  b o u n d a r y  l a y e r .  

Figure 1 shows values of the local coefficient of viscous drag cf(P)~ on the plate 
surface, where cf(P) = p(Bu'/Sy')/(p~u~2), for Ps~ = 3 and Res~ = 0, i0, and i00 (curves 1-3). 
This situation corresponds physically to an increase in particle size with a simultaneous 
increase in the characteristic particle stagnation length. For an impermeable plate surface, 
there is no friction due to particle interaction with the surface. It is evident from a 
comparison of the results in Fig. I that with an increase in particle size due to inclusion 
of the nonlinear term in the drag coefficient in Eq. (2.1), the dimensionless coordinate 
of the drag coefficient maximum on the plate is shifted toward the forward critical point 
by a factor of more than two compared to curve I, obtained with a Stokes resistance law. 
This occurs because the particles in the boundary layer begin to be slowed more intensively, 
and a layer of higher particle density is formed at lower values of the dimensionless coordi- 
nate x. It is interesting to note that there is some reduction in the value of the maximum 
of cf(P)c~R-e with an increase in particle size. With an increase in x, all of the curves 
in Fig. 1 approach a single limiting value equal to (cf~Ree)0/l + Psi, where (cf R/Ree) 0 = 0.332 
is the Blasius value of the friction coefficient [9]. 

The asterisk in Fig. 1 shows results of the numerical solution for the Stokes law of 
particle drag [2], the difference from our results being 9% in the region of the maximum 
of cf. This is evidently due to high values of the density of the disperse phase near the 
plate surface obtained in [2]. In fact, from (i.i) for a Stokes particle-drag law, we have 
the following along the particle trajectory at e << x < g - ~ (e << 1 is the distance from 
the sample trajectory being examined to the plate surface at the entry point of the boundary 
layer) 

us(x,  &) ---- I - -  o - i x  ~- 0(~), ( 2 . 2 )  
v~(x, e) = k(1 - -  ~-~x)e § O(eD, 

y~(x ,  ~) : :  (t + kx)~. + O(~D, 
,os(x, e) : p J [ ( l  - -  (~-~x)(1 + kx~-~)] + 0(~), 

where k = i is a constant determined through combination with the analogous solution in the 
region x ~ O(e2). It is evident from the last equation of (2.2) that Psw ~ Ps~/Usw, as in 
[2]. Meanwhile, this quantity is considerably smaller in value due to the displacing effect 
of the boundary layer. The results of asymptotic solution (2.2) agree well with numerical 
solutions. 

694 



O" I 

0,8 I,! a% 0 I Z 

I/ . . . .  " . . . . . . .  0,8 " ~  

Fig. 3 Fig. 4 

Figure 2 shows profiles of the density of the disperse phase calculated at Ps~ = 3, 
Res~ = i00, and x = 0.i, 0.4, i, and I0 (curves 1-4). The value of Ps increases along the 
particle trajectory due to deceleration of the disperse phase before relaxation of the longi- 
tudinal components of phase velocity. The value of Ps then decreases due to an increase 
in particle velocity above the velocity of the carrier phase in the transverse direction. 
The longitudinal components of velocity of the phase remain nearly the same. The differ- 
ence in transverse velocities results in the appearance of a minimum of Ps (Fig. 2, profile 
4). The value of Ps remains constant along the trajectory at large values of x. With a 
fixed coordinate ~, an increase in x is accompanied by an initial increase in the density 
of the disperse phase and then a decrease in same. It should be noted that the thickness 
of the layer of high density Ps in the case of a nonlinear drag law for Res~ = i00 is great- 
er (by a factor of about two) than for the Stokes drag law. This can be attributed to the 
more intensive deceleration of the particles. The behavior of the profiles of velocities 
u, Us, v, and v s is qualitatively the same as in the case of the Stokes drag law studied in 
detail in [2]. However, at the value of c D determined by Eq. (2.1), there is a more rapid 
equalization of velocities. 

Let us examine a two-phase boundary layer in the presence of suction of gas from the 
plate surface. Here and below, for the sake of simplicity we will assume the existence of 
a Stokes particle-drag law. We will also assume that the suction (injection) parameter is 
constant along the plate surface, fw = const. The behavior of the velocity profiles is qual- 
itatively similar to the case of flow over an impermeable surface, the only difference being 
that the longitudinal velocity of the particles on the surface does not vanish at finite 
values of x but instead approaches zero with an increase in x. The normal components of 
the velocity of the particles and carrier phase on the plate surface are also nontrivial, 
and the condition Ivswl < IVwl is satisfied. We should also note the faster relaxation of 
the normal components of phase velocity compared to the tangential components. 

Figure 3 shows profiles of the density of the disperse phase in the sections x = 0.4, 
2, and 20 (curves 1-3) calculated with fw = 0.5 and a continuous particle density in an 
undisturbed flow Ps~ = i. It is evident that Ps has a finite maximum value on the plate 
surface. The density of the disperse phase on the surface initially increases with an in- 
crease in x as a result of particle deceleration and then decreases very slowly. The latter 
is connected with the fact that, at high values of x, Ps remains nearly constant along the 
particle trajectory but the particles stay in the boundary layer for a fairly long time be- 
fore falling to the surface. Thus, for the example shown in Fig. 3, a particle located in 
the boundary layer at x = 0.15 falls onto the plate only at x = 10. In the limit at x 
m, the density of the disperse phase approaches uniformity and Ps § Ps=" It should be noted 
that the phenomenon of the reduction in Ps at high x is nearly absent due to the small dif- 
ference in the transverse velocity components of the phases. Suction diminishes the thick- 
ness of the high-density layer and significantly reduces the density of the disperse phase 
in the boundary layer. As a result of the impact of particles on the plate surface with 
gas suction, the friction coefficient acquires an additional term 

c! = c~ ) + c~ ~, (2.3) 
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where cf (s) is the component due to interaction of the condensed phase with the surface. In 
the case of a perfectly inelastic particle impact against the plate surface, we have cf (s) = 

(<<1 v: I)~ _ Re-~/~p,~ I v~ I ~ ~" 
p~u~ 

Figure 4 shows values of the friction coefficient on the surface cfv~ calculated from 
(2.3) with different values of the suction and injection parameter at Ps~ = i. Curve 3 cor- 
responds to an impermeable surface, curves i, 2, 4, and 5 correspond to fw = 0.5, 0.2, 4.2, 
and -0.4, and the dashed lines show the corresponding coefficients of viscous drag cf[D ). 
It is evident from a comparison of the results that a low suction velocity has only a slight 
effect on the qualitative behavior of the viscous drag coefficient cf(~) (dashed line 2). 
However, with a further increase in suction velocity, the maximum value of the coefficient 
is reached only at sufficiently high values of x (dashed line i), where phase velocity re- 
laxation begins. This occurs because the suction of the gas and particles of the condensed 
phase prevents the formation of a layer of high particle density with Ps >> Psi- 

Due to collisions of the particles with the surface, cf(S) increases from zero to the 
maximum value and then again decreases to zero with a further increase in x. Meanwhile, 
the maximum of cf (s) is somewhat in advance of the maximum of cf(~). This is to be expected, 
si~c~ cf (s) takes its maximum value in the region of inertial motion of the particles, while 
cf ~ becomes maximal in the particle stagnation zone. With gas injection (curves 4 and 
5), cf s = 0, while cf(D) decreases with an increase in Ifwl. 

It follows from the results obtained here that allowing for the collision of particles 
with the surface has a significant effect on the drag coefficient and leads to an increase 
in its local values by up to 25% (curves i). However, viscous drag remains the determining 
factor. It should be noted that with an increase in the density of the disperse phase in 
the incoming flow, the effect of friction due to particle collision with the surface also 
increases. 

Let us discuss the results obtained with gas injection into a two-phase boundary layer 
from the plate surface. The numerical results show that a particle-free zone is formed near 
the plate surface. Also, the particle trajectories intersect near the separating streamline 
at a certain distance from the front edge of the plate, approximately at x (dimensionless) 
equal to 1.5. The reason for the intersection of particle trajectories is the motion of 
the particles in the "convergent" velocity field of the carrier phase near the separating 
streamline of the particles in the region where particle velocity relaxation is appreciable 
(here, the velocity field is "convergent" in the sense that the velocity vectors at two ad- 
jacent points lying on a normal to the plate surface are directed toward each other). The 
intersection of the particle trajectories will be modeled by a so-called sheet [10], i.e., 
by a surface of discontinuity having a finite surface density, momentum, etc. As regards 
the structure of the sheet, we will use assumptions similar to those made in [i0]: the 
thickness of the sheet is small compared to the thickness of the boundary layer; particles 
falling on the sheet acquire its velocity; the parameters of the sheet do not change through 
its thickness. 

We will write the equations satisfied on a stationary sheet in a boundary layer. With 
allowance for the estimates in the boundary layer, we have the following, similar to [10, 
ii]: 

dRs~Us~ dvs~ 
= ] s  = + - 

(2.4) 
[vn] = 0, [p] = 0, [ul = 0 .  

H e r e ,  RsX = R s x ' R e l / 2 / ( p ~ L )  i s  t h e  d i m e n s i o n l e s s  s u r f a c e  d e n s i t y  o f  p a r t i c l e s  on t h e  s h e e t ;  
Vsk = V s X ' / u ~  i s  t h e  d i m e n s i o n l e s s  v e l o c i t y  v e c t o r  o f  t h e  s h e e t  p a r t i c l e s ,  J s n  + = J s n ' /  
(p~u~)  i s  t h e  d i m e n s i o n l e s s  f l o w  o f  p a r t i c l e s  o n t o  t h e  s h e e t  a l o n g  a n o r m a l  t o  t h e  l a t t e r  
f rom t h e  d i r e c t i o n  o f  t h e  d u s t - l a d e n  g a s ;  v s + = V s + ' / u ~  i s  t h e  v e l o c i t y  v e c t o r  o f  t h e  p a r -  
t i c l e s  w i t h  a p p r o a c h  t o w a r d  t h e  s h e e t  f rom t h e  d i r e c t i o n  o f  t h e  d u s t - l a d e n  g a s ;  t h e  b r a c k e t s  
d e n o t e  d i s c o n t i n u i t i e s  o f  t h e  v a r i a b l e s  on t h e  s h e e t ;  f sk = t s k ' L / u ~  2 i s  t h e  d i m e n s i o n l e s s  
f o r c e  e x e r t e d  by t h e  g a s  on t h e  s h e e t ;  v n i s  t h e  p r o j e c t i o n  o f  t h e  v e l o c i t y  v e c t o r  on t h e  
n o r m a l  t o  t h e  s h e e t .  
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The last condition in (2.4) follows from estimates of the velocity component u from 
the equations of motion of the carrier phase inside the sheet with the assumption of a fi- 
nite value of 8u/By and a small sheet thickness (compared with the thickness of the boun-. 
dary layer). This condition is necessary for an unambiguous transition across the surface 
of discontinuity. 

In actual calculations, the first point on the separating streamline where particle 
trajectories intersect is considered to be the point of origin of the sheet; then we ex- 
amine Eqs. (2.4) along with Eqs. (I.i). The drag coefficient for the sheet in the first 
approximation is assumed to be the same as for single spherical particles. As the results 
of the calculations show, it hardly makes sense to introduce other, more complicated repre- 
sentations for the given problem in light of the relatively small effect of the sheet on 
the motion of the carrier phase. 

Figure 5 shows the dimensionless displacement thickness ~* = J (i- u)dy~ the separating 
0 

streamline of the particles YX, and the surface density of the sheet along the plate (curves 
1-3, respectively). The solid lines show results for Ps~ = 1 and fw = -0.4; the dashed lines 
show results for Ps~ = 3 and fw = -0.4; and the dot-dash lines give results for Ps~ = 1 and 
fw = -0.2. It was found that the separating streamline, dividing the pure gas from the dust- 
laden gas, moves away from the plate surface with an increase in injection (curves 2) and 
approaches the surface with an increase in the density of the disperse phase in the incoming 
flow. It is interesting to note that the presence of particles has a greater effect on the 
displacement thickness of the boundary layer than on the thickness of the region of pure 
injected gas. It was also found that a sheet forms in the region of greatest particle stag- 
nation (curw~s 3). An increase in injection and the density of the disperse phase in the 
undisturbed flow is accompanied by an increase in the surface density of the sheet (and, 
thus, its thickness) and a moderate shift in the stagnation point upstream. With an in- 
crease in x, the surface density of the sheet increases to approximately x = 3 (curves 3). 
With a further increase in x, particle flow onto the sheet nearly ceases, and the surface 
density of the sheet decreases somewhat due to the low rate of increase in sheet velocity. 
It should be noted that the velocity of the sheet is lower than the velocity of the gas, 
i.e., the sheet retards the carrier phase. This in turn reduces the drag coefficient on 
the plate su~=face. 

Figure (5 shows the behavior of profiles of the density of the disperse phase in the 
boundary layer at fw = -0.4 and Ps~ = 3. The value of ps=/Ps is plotted off the x axis. 
Curves 1-5 correspond to x = 6, 3, 1.4, 0.4, and 0. The points denote the position of the 
separating streamline. The disperse phase is absent at lower values of the coordinate q. 
It is evident that the density of the disperse phase near the separating streamline in- 
creases with an increase in x and becomes infinite at the unique stagnation point of the 
sheet (curve 3). With a further increase in x, density Ps decreases, taking large values 
near the sheet (curves 4 and 5). With sufficiently large x in the region where relaxation 
of the longitudinal components of velocity is substantial, the density of the disperse phase 
remains constant along the particle trajectory, while a zone of reduced density Ps (curve 
5) is formed in the external part of the boundary layer because the transverse particle ve- 
locity exceeds the transverse velocity of the carrier phase as the longitudinal velocity 
components are nearing complete relaxation. With an increase in x, the thickness of the 
high-density layer decreases considerably. 
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INFLUENCE OF AN ABRUPT CHANGE IN THE THERMAL BOUNDARY CONDITIONS 

ON THE TURBULENT BOUNDARY LAYER ON A PLATE 

L. N. Drozdova and A. L. Sorokin UDC 532.526 

The development of the thermal boundary layer within a dynamic layer that has already 
been formed is a situation that is often encountered in the practice of analyzing heat ex- 
changers. The formulation of this problem is represented schematically in Fig. I. A homo- 
geneous thermal flux qw acts on a plate with section x = x 0 (x 0 is the length of the un- 
heated section), or the surface temperature changes to T w by a "jump." Here 6o is the thick- 
ness of the dynamic boundary layer in the section of the "jump," L is the length of the heat 
transfer section, and u e and T e are the rate and temperature of the main flow. The flow 
is quasiisothermal. This problem is solved by integral methods in [i, 2]. But this ap- 
proach is inadequately general since it requires additional empirical information. More- 
over, it is difficult to obtain a detailed flow pattern by the integral method. 

The Patankar-Spalding finite-difference method of solving the system of boundary layer 
differential equations is used in this paper to solve the formulated problem. The method 
underestimates the value of the Stanton number St, especially near the section x = x0, where 
the discrepancy between the experimental results and a computation is about 40% for the data 
from [2] and about 15% for data from [3]. 

The method mentioned was also applied by other authors [4] to solve an analogous prob- 
lem. They visibly experienced similar difficulties since they selected the turbulent Prandtl 
number Pr T over the boundary layer section to obtain agreement between experiment and theory 
in the "jump" zone. The computation was performed with the variable 

~ [ t - e x p ( - y / ~ l  (1) 
PrT(y) = n n [ i -  exp(-- y/B)]  '~ 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
5, pp. 61-63, September-October, 1987. Original article submitted June 9, 1986. 

698 0021-8944/87/2805-0698512.50 �9 1988 Plenum Publishing Corporation 


